AN OUTBREAK OF HAEMORRHAGIC SEPTICAEMIA IN THE NAVITHANVELI VETERINARY RANGE IN AMPARA DISTRICT, SRI LANKA

M.W.D.C. Weerathunga¹, J.K.H. Ubeyratne² and M.A. Nadheer¹

¹ Department of Animal Production and Health, Ampara, Sri Lanka
² Veterinary Research Institute, Gannoruwa, Peradeniya, Sri Lanka

SUMMARY: Haemorrhagic septicaemia (HS) is a major disease of bovines in Sri Lanka before 2005. The disease is endemic in dry zone where clinical incidences occur with the onset of monsoon. An outbreak of HS occurred in twenty 1-3 year old local buffaloes of which 15 died, in mid-October 2016 in Navithanveli veterinary range in Ampara District. The disease continued and another 13 buffaloes and 3 cattle died. Clinical and necropsy findings and laboratory identification confirmed that the causative organism was Pasteurella multocida serotype B:2. Outbreak was controlled with treatment and vaccination of all susceptible animals. This is the first report of the re-emergence of P. multocida after 2000 in Ampara district.

INTRODUCTION

Haemorrhagic septicaemia (HS) is a fatal septicemic disease of bovines where water buffaloes are more susceptible than cattle (Bain et al., 1982). It is caused by P. multocida, a Gram negative cocobacilli which colonize the nasopharynx (Wijewardana, 1992; Tabatabaei et al., 2007). Specific serotypes of P. multocida B: 2 and E: 2 cause HS in Asia and Africa respectively (Benkirane, 2002; Carter, 1955). P. multocida can survive for some period in soil or water (Bain et al., 1982) where viability will be reduced after 2-3 week. Direct contact with infected animals and fomites are the main sources of transmission of the causative organism and bovines are infected due to ingestion of contaminated pasture or water. In endemic areas, up to 5% of cattle and water buffalo may act as carriers (De Alwis., 1992) and harbour organism in their nasopharynx. Stress, poor nutrition, close herd, wet humid weather leads to spreading of the disease to buffaloes and cattle during paddy cultivation in the north east monsoon. Furthermore moist environment facilitate the longer survival of the organism outside the host (De Alwis, 1999).

Most cases in cattle and buffaloes are acute or per acute with signs of depression, fever, salivation and a serous nasal discharge. Furthermore they develop oedematous swellings in the pharyngeal region which spread to the ventral cervical region and brisket, causing hyperaemic mucous membranes and respiratory distress. Moreover, animals collapse and die 6-24 hours after appearance of clinical signs (De Alwis et al., 1992). Mortality is nearly 100% unless the animal is treated very early with antibiotic during the pyrexic stage. Sanitary measures and vaccination should be carried out in-order to minimize the occurrence of the disease (Benkirane and De Alwis, 2002). Vaccination using inactivated culture has been used to overcome the disease in many countries and in Sri Lanka. Vaccination must initiate at 4 months and continued annually in Sri Lanka (De Alwis., 1999).

HS is seen in tropical countries in Africa, South and South East Asia, Southern Europe and Middle East. HS is a devastating alarming problem in cattle and buffaloes in Asia because of economic loss and crop redundant (De Alwis, 1999). HS was first reported in 1911 in Sri Lanka but epidemics occurred in mid 1950s with 5000 deaths of cattle and buffaloes. However, vaccination started in 1957 but annual vaccination was inaugurated in 1984 in Sri Lanka (De Alwis, 1992). Consequently in the epidemics reported in early 1980s and 1990s, the mortality had declined progressively (FAO, 1991; De Alwis, 1999). De Alwis reported HS was endemic in 13 districts covering two-third of the island during 1980s. Sri Lanka has self-declared HS on 12th December 2012 following massive national efforts through passive, active and serological surveillance according to OIE terrestrial animal health code (OIE, 2012). This article describe the reoccurrence of HS in water buffaloes and cattle in Navithanveli veterinary range in Ampara District probably the first re-emerging episode in the Ampara district.

MATERIALS AND METHODS

Outbreak location

Navithanveli is situated in the Ampara District bordering from East and West by Kalmunai (Kittange Lake) and Uhana range, South and North by Samanthurai and Thumberkerny (Batticalo District). Navitanveli experience a long dry period which extends from February to November. Main occupation of the
people is paddy cultivation which depends on North east monsoon extending from November to February. The first incidence occurred in the Chavalakada Grama Niladhari (GN) area adjacent to the Kittange lake. Furthermore cases were reported from Annamalai 01, Annamalai 02 and Chavalakada GN divisions (Figure 1) where farmers rare buffaloes and cattle with free grazing.

History and clinical signs

First occurrence was reported with the sudden death of 15 local buffaloes including eight females and seven males on 17th October 2016 with the onset of North east monsoon. However, there were five local buffaloes showing clinical signs of depression, severe respiratory distress, submandibular, ventral cervical and brisket oedema, hyperaemic mucous membranes, fever (106°F) and hyper salivation (Figure 2). All the affected animals were within the age group of 1-3 years. Furthermore the outbreak continued with sudden death of 5 buffaloes in adjacent herds (Chavalakada, Annamalai 01 and Annamalai 02) where 28 showed clinical signs. Moreover the outbreak spread to the cattle herds in Chavalakada and Annamalai 01, with 24 clinically affected animals of which 3 died in a short period of time. The condition in cattle was less severe than buffaloes as they have shown only hyperaemic mucous membrane, hyperthermia and respiratory distress.

Laboratory Investigation

Bacteriological analysis

Post mortem on 3 buffaloes and one cattle was conducted in 18th and 25th October. Samples of heart blood, tissue samples of lung, liver and spleen were collected and dispatched in ice to the Central Veterinary Investigation Centre at Veterinary Research Institute, Gannoruwa.

Samples were cultured aerobically on 5% blood agar and on Mac Conkey agar plates and incubated at 37°C for 24 hours. Positive cultures were subjected to biochemical tests (Indole, Oxidase and Nitrate) and mouse inoculation (subcutaneous or intra-peritoneal route). Further confirmation was done by serotyping, agglutination test with serum raised against *Pasteurella multocida* B: 2 followed by agar gel precipitation test.

Serogroup identification by Polymerase Chain Reaction

DNA extraction

Genomic DNA isolation from samples were performed using the tissue sample protocol of the QIA amp DNA (QIAGEN, Germany) purification mini kit according to the manufacturer's instructions with a loop full of cells (culture) suspended in 200µl of distilled water. Samples were centrifuged for 5 minutes at 3000 rpm. The supernatant was removed completely and discarded.

Multiplex PCR using HS causing type B

PCR reaction consisted with 1 × PCR buffer, 200 µM each deoxynucleotide triphosphate (dNTP), 2 mM MgCl2, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with initial denaturing at 95°C for 5 minutes, 30 cycles of denaturing at 95°C for 1 minute, annealing at 55°C for 1 minute and extension 72°C for 1 minute, with a final extension at 72°C for 7 minutes. Distilled water (QIAGEN) was used as a negative control. A volume of 5 µl of each sample was electrophoresed on a 2% agarose gel in 1 × Tris-acetate running buffer (TAE) at 4 V/cm for 1 hour. The gel is stained with 1% ethidium bromide and DNA fragments are viewed by UV trans illumination.

Antimicrobial susceptibility test

Antimicrobial susceptibility test was carried out by the disc diffusion method according to the manuals of clinical laboratory standard institute. Cephalexin (30µg), Amoxicillin clavulinate (augmentin) (30µg), Tetracycline (30µg), Cloxacillin (10µg) and Penicillin (10µg), Erythromycin (5µg), Neomycin (30µg) and Enrofloxacin (5µg) discs (HIMEDIA, India) were used for the test.

RESULTS AND DISCUSSION

Necropsy findings

Necropsy examination of three buffaloes revealed congested lungs, petechial haemorrhages on cardiac parenchyma, sub-epicardial adipose tissue, serosal surface of abdominal organs, and blood tinged fluid in the body cavities (Figure 3).

Laboratory findings

Smooth, greyish glistening translucent colonies on blood agar revealed characteristics similar to that of *P. multocida* colonies. Leishman stain indicated Gram negative bipolar short coccobacilli. There was no growth on MacConkey agar. Indole, oxidase and nitrate biochemical tests were positive. Further, in mouse inoculation test death occurred after 18 hours and gram negative bipolar coccobacilli were isolated from heart blood. Serotyping revealed that the isolate agglutinated with specific serogroup *P. multocida* type B: 2. Pathogenic strain was confirmed as *P. multocida* serotype B by multiplex PCR with the amplification product sizes of 457bp, 620bp and 720bp respectively (Figure 4). Conventional bacteriological test, serotyping and molecular findings confirmed the isolate is *P. multocida*.
serotype B: 2. This organism was sensitive for tetracycline, penicillin, cephalaxin, amoxicillin clavulunate (augmentin) and cloxacillin.

Outbreak control

The index cases were tentatively diagnosed as HS by the clinical signs and necropsy findings. Thereafter treatment was initiated with broad spectrum antibiotic oxytetracycline (20%) at the rate of 10mg/kg and dexamethasone 0.1mg/kg intramuscularly. At the same time, blood, tissue samples of lung, liver and spleen were collected and dispatched in ice to the Central Veterinary Laboratory for the test.

Samples were cultured aerobically on 5% blood agar. Positive cultures were subjected to biochemical tests (Indole, Oxidase and Nitrate) and mouse inoculation. Blood serum samples were collected aseptically, and streptomycin (5µg) discs (HIMEDIA, India) were used for confirmation. The multiplex PCR was performed in a Gene Amp PCR according to the manufacturer’s instructions with a loop full of cells. The gel is stained with 1% ethidium bromide and DNA fragments are viewed by UV trans illumination.

Outbreak control

First occurrence was reported with the sudden death of a 12-year-old buffalo on 18th October. Further cases were reported from Annamalai 01, GCC-1 and Chavalakada GN divisions (Figure 1). Necropsy findings showed hyperaemic mucous membrane, hyperthermia and fever (106°F) in affected cases. Most of the infected animals were within the age group of 1-3 years. Furthermore, the minute lesions, pleural effusion, congested lungs, petechial haemorrhages on cardiac focal area, renal congestion, and pericardial oedema, hyperaemic mucous membranes, fever (106°F) were observed in affected cases by gross examination (Figure 2). All the affected animals were treated with broad-spectrum antibiotics (tetracycline, penicillin, cephalexin, amoxicillin clavulunate and cloxacillin). Furthermore the minute and extension 72°C for 1 minute, with a final denaturing at 95°C for 5 minutes, 30 cycles of PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase.

RESULTS AND DISCUSSION

DNA extraction with serum raised against Pasteurella multocida by multiplex PCR with the amplification product sizes were within the age group of 1-3 years. Furthermore the minute and extension 72°C for 1 minute, with a final denaturing at 95°C for 5 minutes, 30 cycles of Multiplex PCR was performed in a Gene Amp PCR Conventional bacteriological test, serotyping and mouse inoculation. First occurrence was reported with the sudden death of a 12-year-old buffalo on 18th October. Further cases were reported from Annamalai 01, GCC-1 and Chavalakada GN divisions (Figure 1). Necropsy findings showed hyperaemic mucous membrane, hyperthermia and fever (106°F) in affected cases. Most of the infected animals were within the age group of 1-3 years. Furthermore, the minute lesions, pleural effusion, congested lungs, petechial haemorrhages on cardiac focal area, renal congestion, and pericardial oedema, hyperaemic mucous membranes, fever (106°F) were observed in affected cases by gross examination (Figure 2). All the affected animals were treated with broad-spectrum antibiotics (tetracycline, penicillin, cephalexin, amoxicillin clavulunate and cloxacillin). Furthermore the minute and extension 72°C for 1 minute, with a final denaturing at 95°C for 5 minutes, 30 cycles of PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase. PCR was done in a final volume of 25µl with MgCl, 3.2 pmol of each primer and 1 µl Taq DNA polymerase.

Figure 1. Geographical distribution of Navithanveli veterinary Divisional secretarial division (Blue colour indicate outbreak locations) Source; Navithanveli Administrative map

Figure 2. Clinical cases of HS affected buffaloes (a, depressed animal; b, congested mucous membrane; c, hypersalivation and d, oedema in submandibular, cervical region towards brisket)
time all the susceptible animals in herds were vaccinated with inactivated *P. multocida* combined with alum adjuvant as a control measure. Following early treatment, 24 buffaloes and 21 cattle successfully recovered but 4 buffaloes died despite treatment. Dead carcasses were deeply buried and infected areas were burnt with straw. Furthermore routine preventive vaccination was initiated against HS in Ampara District to prevent further occurrence of the disease.

DISCUSSION

Outbreaks of HS usually occur in many Asian and African countries resulting in high mortality and morbidity (Bain *et al.*, 1982; De Alwis, 1992). According to this outbreak, HS occurred with the onset of Northeast monsoon in Navithanveli veterinary range from October to February. Hot and humid climatic condition is a major contributory factor in this outbreak of HS where high environmental temperature facilitates the multiplication of the bacteria outside the host (Hajikolaei *et al.*, 2008). This is similar to the observations made by De Alwis (1992). Majority of the affected animals in this outbreak were buffaloes where 25 died and among them 20 were from the same herd. These affected buffaloes were mainly reared for paddy cultivation during north east monsoon in the area where they freely roam in the lands. Harvesting, lack of food, overcrowding, and poor hygiene are stress factors to the animals that facilitate harbouring of organisms in their nasopharynx similar to the observations made by De Alwis (1992). Furthermore, paddocking together at night, using common grazing land and water resource are involved in spreading of the disease to adjacent buffaloes and cattle herds (Chavalaka, Annamalaia 01 and Annamalai 02 GN division) during this outbreak.

Under field conditions, HS is usually diagnosed on the basis of clinical signs and symptoms (Khan *et al.*, 2006). Early treatment depends on the early diagnosis of the disease (De Alwis, 1999). Respiratory distress, dyspnoea, high temperature, reduced appetite, restlessness and hypersalivation were present in affected buffaloes similar to that observed by Sheikh *et al.*, (1996).

P. multocida produces endotoxins which causes the toxaemia (Horadagoda *et al.*, 2001; Zafar *et al.*, 2010). During necropsy, it was observed in the present outbreak that haemorrhages of abdominal organs, heart, congested...
lungs were present in all carcasses and similar type of lesions has been reported (Sheikh et al., 1996). The animals died within 4-6 hours after showing the clinical signs. According to De Alwis (1992) necropsy findings depend on the duration of the clinical signs. Per acute cases rarely develop post-mortem lesions.

In peracute cases, buffalo die without any clinical signs in common grazing lands and near water bodies which provide source of infection for other animals (Sharee and Salim, 1991) Carcasses left on grazing lands and near water bodies lead to further spreading of the disease in this outbreak because farmers were reluctant to do proper disposal of carcasses due to heavy economic loss and lack of awareness. Therefore, awareness programmes were conducted to the farmers to encourage carcass burning and restrict animal movements.

Due to the annual vaccination programmes and improved diagnostic facilities, HS was not reported in last 11 years in Sri Lanka and self-declaration for HS was done in 2012. Even though the prophylactic vaccination for HS is carried out in the country, vaccination had not been continued in Navithanveli range for several years. That might be the reason for reduced immunity among animals. During an outbreak it is preferred to initiate vaccination to entire herds irrespective of previous vaccination history (Benkirane and De Alwis, 2002) and it was practiced soon after this outbreak in the Navithanveli veterinary range. It was locally produced HS alum precipitated vaccine containing killed whole culture of *P. multocida*. Moreover, prophylactic vaccination should be continued with oil adjuvant vaccine for long term immunity (De Alwis, 1992). Subsequently cattle and buffalo transport was withheld and farmer awareness programmes were initiated to minimize the condition.

CONCLUSION

This is the first re-emerging outbreak in Navithanveli range, however previous outbreaks were not documented in history. Early detection methods, restricting movements of animals, routine preventive vaccination programmes and awareness programmes are suggested to prevent further occurrence of the disease.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the technical and support staff members of veterinary office Navithanveli and Central veterinary investigation centre, Veterinary research Institute, G Matombo for assisting and laboratory investigation.

REFERENCES

